• Home
  • Search Jobs
  • Register CV
  • Post a Job
  • Employer Pricing
  • Contact Us
  • Sign in
  • Sign up
  • Home
  • Search Jobs
  • Register CV
  • Post a Job
  • Employer Pricing
  • Contact Us
Sorry, that job is no longer available. Here are some results that may be similar to the job you were looking for.

509 jobs found

Email me jobs like this
Refine Search
Current Search
product manager solutions architect
Sky
Machine Learning Engineering Lead
Sky City Of Westminster, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Applied Machine Learning Lead
Sky Beckenham, Kent
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
ML Tech Lead
Sky Watford, Hertfordshire
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
ML Tech Lead
Sky Dagenham, Essex
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Machine Learning Engineering Lead
Sky Wembley, Middlesex
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Applied Machine Learning Lead
Sky Hammersmith And Fulham, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Machine Learning Engineering Lead
Sky Hammersmith And Fulham, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
ML Tech Lead
Sky Islington, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
ML Tech Lead
Sky Romford, Essex
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
ML Tech Lead
Sky City Of Westminster, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Applied Machine Learning Lead
Sky Brent, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Applied Machine Learning Lead
Sky Islington, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Machine Learning Team Lead
Sky Dagenham, Essex
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Machine Learning Team Lead
Sky Watford, Hertfordshire
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
CBSbutler Holdings Limited trading as CBSbutler
CAS Architect
CBSbutler Holdings Limited trading as CBSbutler Basingstoke, Hampshire
Cas Architect +Permanent opportunity +Hybrid working in Basingstoke / Bracknell +SC / DV cleared role - must be eligible for DV clearance + 70,000 + 6k car + 15% bonus + 10% DV allowance Skills: +Cisco Firepower +HLD / LLD +Team Leadership experience We are looking for a BPS/CAS Architect to technically lead projects in cyber monitoring and remote access within a large program. This is within the secure Defence and Government sector. You will own requirements analysis for new proposed changes, devise and propose solution changes along with any proof of concept activities to support the production of technical solutions, produce high level design collateral or govern and review design documents, and give technical leadership within the program in all phases of the project solution life-cycle. The role reports into the BPS/CAS Tech Lead. Your experience Experienced in analysis of customer requirements, with demonstrable network design (high level and low level) experience in proposing and utilizing technologies from a variety of industry leading technology vendors. Demonstrable experience of evaluating customer strategy, operations and processes and proposing technical solutions to deliver on their strategy and improve business performance. Demonstrable experience in providing Technical Leadership/Ownership and expertise to guide the design and delivery of solutions through all phases of the large-scale project life cycle. Breadth of networking knowledge to include, protocols and cyber monitoring tools. Specific skills include Juniper Switching and Configuration, WAN routing including MPLS and BGP, network gateways, VPNs, remote access solutions (e.g. AnyConnect), network encryption and tunnelling technologies, Cisco Firepower, F5 TLS Intercept, Packet Brokers, Tap Aggregators, Gigamon, SNMP, TCP, TLS (including requisite cryptography), TLS intercept, PKI, HTTP, Sockets API. Familiarity with Endace technologies, HSMs, virtualization and scripting are desirable. Understanding of technologies for collecting, analysing, and storing security event data, and to automate and orchestrate incident response workflows. Participating in requirements gathering and development of solutions on a page Experience of performance testing of cyber monitoring tools (sizing, capacity management and planning, performance troubleshooting). Solid understanding of the project end-to-end life cycle, with good commercial and financial awareness in terms of understanding risks and dependencies associated with any delivery project. Experienced in the analysis and trouble-shooting of complex issues and defects, mitigating business, technical, and operational risks, and making recommendations to senior management. Demonstrable experience of technically coordinating other technical architects and engineers, collaborating with multiple teams, supporting project managers in planning and reporting activities, service readiness, and providing guidance and support to live service teams. Excellent communications skills with multiple stakeholders, able to take ownership and responsibility and make quick decisions. Able to communicate calmly and concisely with the Customer. If you'd like to discuss this CAS Architect in more detail, please send your updated CV to (url removed) and I will get in touch.
Jan 19, 2026
Full time
Cas Architect +Permanent opportunity +Hybrid working in Basingstoke / Bracknell +SC / DV cleared role - must be eligible for DV clearance + 70,000 + 6k car + 15% bonus + 10% DV allowance Skills: +Cisco Firepower +HLD / LLD +Team Leadership experience We are looking for a BPS/CAS Architect to technically lead projects in cyber monitoring and remote access within a large program. This is within the secure Defence and Government sector. You will own requirements analysis for new proposed changes, devise and propose solution changes along with any proof of concept activities to support the production of technical solutions, produce high level design collateral or govern and review design documents, and give technical leadership within the program in all phases of the project solution life-cycle. The role reports into the BPS/CAS Tech Lead. Your experience Experienced in analysis of customer requirements, with demonstrable network design (high level and low level) experience in proposing and utilizing technologies from a variety of industry leading technology vendors. Demonstrable experience of evaluating customer strategy, operations and processes and proposing technical solutions to deliver on their strategy and improve business performance. Demonstrable experience in providing Technical Leadership/Ownership and expertise to guide the design and delivery of solutions through all phases of the large-scale project life cycle. Breadth of networking knowledge to include, protocols and cyber monitoring tools. Specific skills include Juniper Switching and Configuration, WAN routing including MPLS and BGP, network gateways, VPNs, remote access solutions (e.g. AnyConnect), network encryption and tunnelling technologies, Cisco Firepower, F5 TLS Intercept, Packet Brokers, Tap Aggregators, Gigamon, SNMP, TCP, TLS (including requisite cryptography), TLS intercept, PKI, HTTP, Sockets API. Familiarity with Endace technologies, HSMs, virtualization and scripting are desirable. Understanding of technologies for collecting, analysing, and storing security event data, and to automate and orchestrate incident response workflows. Participating in requirements gathering and development of solutions on a page Experience of performance testing of cyber monitoring tools (sizing, capacity management and planning, performance troubleshooting). Solid understanding of the project end-to-end life cycle, with good commercial and financial awareness in terms of understanding risks and dependencies associated with any delivery project. Experienced in the analysis and trouble-shooting of complex issues and defects, mitigating business, technical, and operational risks, and making recommendations to senior management. Demonstrable experience of technically coordinating other technical architects and engineers, collaborating with multiple teams, supporting project managers in planning and reporting activities, service readiness, and providing guidance and support to live service teams. Excellent communications skills with multiple stakeholders, able to take ownership and responsibility and make quick decisions. Able to communicate calmly and concisely with the Customer. If you'd like to discuss this CAS Architect in more detail, please send your updated CV to (url removed) and I will get in touch.
Sky
Applied Machine Learning Lead
Sky City Of Westminster, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Machine Learning Engineering Lead
Sky
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Sky
Machine Learning Team Lead
Sky City Of Westminster, London
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
TransUnion
UK Regional Market Lead - Technical Product Management (TPM)
TransUnion City, Leeds
TransUnion's Job Applicant Privacy Notice What We'll Bring: We Are TransUnion: TransUnion is a major credit reference agency, and we offer specialist services in fraud, identity and risk management, automated decisioning and demographics. We support organisations across a variety of sectors including finance, retail, telecommunications, utilities, gaming, government and insurance. What You'll Bring: We're looking for a UK Regional Market Lead - Technical Product Management (TPM) to join our growing team. This is a senior leadership role responsible for overseeing all TPMs within a designated region. This role acts as the strategic and technical anchor for the region, ensuring alignment between global technology strategy and regional business priorities. The Regional Lead is expected to deeply understand the regional business landscape, systems architecture, and stakeholder dynamics, serving as both a subject matter expert and a trusted advisor. Day to Day You'll Be: Regional TPM Leadership Lead, mentor, and manage TPMs embedded across product lines and market initiatives within the region. Drive consistency in TPM practices, delivery excellence, and platform maturity across regional teams. Business Pulse & Strategic Alignment Maintain a deep understanding of the region's business priorities, regulatory environment, and customer needs. Translate regional business goals into actionable technical strategies and execution plans. Architecture & Systems Expertise Act as the regional SME for systems, platforms, and architecture. Partner with engineering and architecture teams to ensure scalable, secure, and regionally optimized solutions. Stakeholder Influence & Advocacy Build strong relationships with regional business leaders, CIOs, and external partners. Represent the region in global forums, advocating for regional needs, constraints, and innovations. Execution Oversight Ensure TPMs are driving outcome-focused delivery across platforms and services. Monitor delivery progress, unblock dependencies, and escalate risks as needed. Communication & Visibility Establish transparent communication channels between regional TPMs and global leadership. Provide regular updates on regional delivery health, business impact, and technical challenges. Essential Skills & Experience: Track record years of experience in product management, technical delivery, or enterprise architecture roles. Prior experience in regional leadership or market-facing roles preferred. Proven track record of managing TPMs or similar roles across multiple product lines. Deep understanding of enterprise systems, data platforms, and integration patterns. Experience in managing cross-functional technical teams and complex delivery environments. Strategic thinker with strong business acumen and regional market awareness. Influential communicator with proven stakeholder management and negotiation skills. Collaborative leader with a bias for action and outcome orientation. Strong track-record in product management, technical delivery, or enterprise architecture roles. Prior experience in regional leadership or market-facing roles preferred. Proven track record of managing TPMs or similar roles across multiple product lines. Impact You'll Make: What's In It For you? At TransUnion you will be joining a friendly, forward thinking global business. As well as an excellent salary and bonus scheme or commission scheme (if joining our sales teams) our benefits package comes with: 26 days' annual leave + bank holidays (increasing with service) Global paid wellness days off + a bonus day off to celebrate your birthday A generous contributory pension scheme + access to the TransUnion Employee Stock Purchase Plan Private health care + a variety of physical, mental and financial fitness wellbeing programmes such as access to mindfulness tools Access to our diversity forums and communities so you can get involved in causes close to your heart TransUnion - a place to grow: If there's something on the list of essential / desirable skills that you can't quite tick off, don't let that put you off applying. We are open to exploring training and development opportunities for the right candidate to ensure you are successful. We know imposter syndrome is real, lets confront it so we can continue to grow and thrive together Flexibility at TU: We recognise that our people need the freedom to balance their day-to-day lives with their work. This is why we've set out to create inclusive and flexible policies and practices for you to accommodate all your responsibilities and needs: children, family and beyond. If the role is advertised as full time, don't let this stop you from applying. Let us know if you're looking for a part time or flexible working arrangement and we can discuss this with you. Additional support: At TransUnion, we're committed to fostering an inclusive and diverse workplace where all individual's talents and perspectives are valued. When you apply for a position with us, you're not just joining a team, you're becoming part of a community that celebrates differences and embraces equality. We understand that everyone has different needs, which is why we offer a range of reasonable adjustments to our recruitment process. Please let us know if you require any reasonable adjustments to help you through the application process or to attend an interview with us by contacting (url removed) Interview & Hiring Process: Most of our recruitment processes are virtual, so you'll get to know our hiring managers and teams over the phone and through video. If we need you to attend a physical in person interview your recruiter will inform you of this. We do not accept any unsolicited CV's from recruitment agencies. If you are a recruitment agency on our PSL our talent team will contact you directly should we require any assistance. Find out more about Life At TU UK: (url removed) is a hybrid position and involves regular performance of job responsibilities virtually as well as in-person at an assigned TU office location for a minimum of two days a week. TransUnion Job Title Sr Manager, Product Management
Jan 19, 2026
Full time
TransUnion's Job Applicant Privacy Notice What We'll Bring: We Are TransUnion: TransUnion is a major credit reference agency, and we offer specialist services in fraud, identity and risk management, automated decisioning and demographics. We support organisations across a variety of sectors including finance, retail, telecommunications, utilities, gaming, government and insurance. What You'll Bring: We're looking for a UK Regional Market Lead - Technical Product Management (TPM) to join our growing team. This is a senior leadership role responsible for overseeing all TPMs within a designated region. This role acts as the strategic and technical anchor for the region, ensuring alignment between global technology strategy and regional business priorities. The Regional Lead is expected to deeply understand the regional business landscape, systems architecture, and stakeholder dynamics, serving as both a subject matter expert and a trusted advisor. Day to Day You'll Be: Regional TPM Leadership Lead, mentor, and manage TPMs embedded across product lines and market initiatives within the region. Drive consistency in TPM practices, delivery excellence, and platform maturity across regional teams. Business Pulse & Strategic Alignment Maintain a deep understanding of the region's business priorities, regulatory environment, and customer needs. Translate regional business goals into actionable technical strategies and execution plans. Architecture & Systems Expertise Act as the regional SME for systems, platforms, and architecture. Partner with engineering and architecture teams to ensure scalable, secure, and regionally optimized solutions. Stakeholder Influence & Advocacy Build strong relationships with regional business leaders, CIOs, and external partners. Represent the region in global forums, advocating for regional needs, constraints, and innovations. Execution Oversight Ensure TPMs are driving outcome-focused delivery across platforms and services. Monitor delivery progress, unblock dependencies, and escalate risks as needed. Communication & Visibility Establish transparent communication channels between regional TPMs and global leadership. Provide regular updates on regional delivery health, business impact, and technical challenges. Essential Skills & Experience: Track record years of experience in product management, technical delivery, or enterprise architecture roles. Prior experience in regional leadership or market-facing roles preferred. Proven track record of managing TPMs or similar roles across multiple product lines. Deep understanding of enterprise systems, data platforms, and integration patterns. Experience in managing cross-functional technical teams and complex delivery environments. Strategic thinker with strong business acumen and regional market awareness. Influential communicator with proven stakeholder management and negotiation skills. Collaborative leader with a bias for action and outcome orientation. Strong track-record in product management, technical delivery, or enterprise architecture roles. Prior experience in regional leadership or market-facing roles preferred. Proven track record of managing TPMs or similar roles across multiple product lines. Impact You'll Make: What's In It For you? At TransUnion you will be joining a friendly, forward thinking global business. As well as an excellent salary and bonus scheme or commission scheme (if joining our sales teams) our benefits package comes with: 26 days' annual leave + bank holidays (increasing with service) Global paid wellness days off + a bonus day off to celebrate your birthday A generous contributory pension scheme + access to the TransUnion Employee Stock Purchase Plan Private health care + a variety of physical, mental and financial fitness wellbeing programmes such as access to mindfulness tools Access to our diversity forums and communities so you can get involved in causes close to your heart TransUnion - a place to grow: If there's something on the list of essential / desirable skills that you can't quite tick off, don't let that put you off applying. We are open to exploring training and development opportunities for the right candidate to ensure you are successful. We know imposter syndrome is real, lets confront it so we can continue to grow and thrive together Flexibility at TU: We recognise that our people need the freedom to balance their day-to-day lives with their work. This is why we've set out to create inclusive and flexible policies and practices for you to accommodate all your responsibilities and needs: children, family and beyond. If the role is advertised as full time, don't let this stop you from applying. Let us know if you're looking for a part time or flexible working arrangement and we can discuss this with you. Additional support: At TransUnion, we're committed to fostering an inclusive and diverse workplace where all individual's talents and perspectives are valued. When you apply for a position with us, you're not just joining a team, you're becoming part of a community that celebrates differences and embraces equality. We understand that everyone has different needs, which is why we offer a range of reasonable adjustments to our recruitment process. Please let us know if you require any reasonable adjustments to help you through the application process or to attend an interview with us by contacting (url removed) Interview & Hiring Process: Most of our recruitment processes are virtual, so you'll get to know our hiring managers and teams over the phone and through video. If we need you to attend a physical in person interview your recruiter will inform you of this. We do not accept any unsolicited CV's from recruitment agencies. If you are a recruitment agency on our PSL our talent team will contact you directly should we require any assistance. Find out more about Life At TU UK: (url removed) is a hybrid position and involves regular performance of job responsibilities virtually as well as in-person at an assigned TU office location for a minimum of two days a week. TransUnion Job Title Sr Manager, Product Management
Sky
ML Tech Lead
Sky St. Albans, Hertfordshire
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.
Jan 19, 2026
Full time
We believe in better. And we make it happen. Better content. Better products. And better careers. Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate. We turn big ideas into the products, content and services millions of people love. And we do it all right here at Sky. What you'll do We are seeking a highly skilled Lead Machine Learning Engineer to advance our personalised recommendation systems by developing efficient, low-latency solutions that serve millions of users globally. The successful candidate will collaborate closely with data scientists, engineers, and product managers to design intelligent content recommendation mechanisms and drive the ongoing advancement of our Machine Learning Platform. Model Development: Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis. Data Pipeline Engineering: Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large-scale datasets. Production Deployment: Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance. Experimentation: Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement. Cross-Functional Collaboration: Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs. Research & Innovation: Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems. What you'll bring Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance. Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch). Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (eg. Tensorflow Serving, Triton, TorchServe). Experience with high-volume data processing and real-time streaming architectures. Strong understanding of recommendation system design and personalisation algorithms. Familiarity with Generative AI and its applications in production settings. Exceptional communication and analytical problem-solving skills. Proven successful experience in mentoring less experienced engineers to improve their technical skills A Typical Day at the Office When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what's happening in the tech communities, then catch up with everyone at the team stand-up. After that, you'll join your team and pick the first task to get cracking on. At lunchtime, you've got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup - whatever suits you. Once you're back, you'll carry on working with your team on your current feature. Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective. Global OTT Technology Our team develops and supports market-leading video streaming services, underpinned by state-of-the-art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world's best entertainment, news and sport. The rewards There's one thing people can't stop talking about when it comes to : the perks. Here's a taster: Sky Q, for the TV you love all in one place The magic of Sky Glass at an exclusive rate A generous pension package Private healthcare Discounted mobile and broadband A wide range of Sky VIP rewards and experiences Inclusion & how you'll work We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can. We've embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You'll find out more about what hybrid working looks like for your role later on in the recruitment process. Your office space Osterley Our Osterley Campus is a 10-minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers. On campus, you'll find 13 subsidised restaurants, cafes, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon. We'd love to hear from you Inventive, forward-thinking minds come together to work in Tech, Product and Data at Sky. It's a place where you can explore what if, how far, and what next. But better doesn't stop at what we do, it's how we do it, too. We embrace each other's differences. We support our community and contribute to a sustainable future for our business and the planet. If you believe in better, we'll back you all the way. Just so you know: if your application is successful, we'll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.

Modal Window

  • Home
  • Contact
  • About Us
  • Terms & Conditions
  • Privacy
  • Employer
  • Post a Job
  • Search Resumes
  • Sign in
  • Job Seeker
  • Find Jobs
  • Create Resume
  • Sign in
  • Facebook
  • Twitter
  • Google Plus
  • LinkedIn
Parent and Partner sites: IT Job Board | Jobs Near Me | RightTalent.co.uk | Quantity Surveyor jobs | Building Surveyor jobs | Construction Recruitment | Talent Recruiter | Construction Job Board | Property jobs | myJobsnearme.com | Jobs near me
© 2008-2026 Jobsite Jobs | Designed by Web Design Agency